

New Horizons for the UK Agri-food supply chain

Measuring the impacts of switching agriculture in England & Wales to organic management

Dr Laurence Smith *Royal Agricultural University*

Guardian 15/5/07 – reporting French work

Source: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat (2007)

What role for organic agriculture?

Reganold and Wachter (2016) Nature Plants 2, 15221

Research Question: to what extent would a large scale conversion to organic agriculture meet demands for a more productive agriculture with lower GHGs?

Data collection

Construction of farm types

Yield modelling

Land and farm type area estimates

Farm Business Survey data, 200 organic farms in total

NDICEA modelling for 16 soil / rainfall bands at 3 rates of N fixation

N crop rotation model

UK Meteorological Office, National Soil Resources Institute and Defra datasets

Soil and rain map

Farm type map

Upscaling

Crop production impacts 100% organic England and Wales

Smith et al (2018) Land Use Policy doi: 10.1016/j.landusepol.2018.02.035 Smith et al (2019) Nature Communications doi: 10.1038/s41467-019-12622-7

Upscaling

Livestock production impacts 100% organic England and Wales

Smith et al (2018) Land Use Policy doi: 10.1016/j.landusepol.2018.02.035 Smith et al (2019) Nature Communications doi: 10.1038/s41467-019-12622-7

Upscaling

Output by Public Health England's "Eatwell Plate" Group: % food energy output under organic management compared to 2010 non-organic baseline

Life Cycle Assessment

Methane CH₄

Kg CO₂ equivalent per tonne of product

Nitrous oxide N₂O

Carbon dioxide CO₂

GHGs per tonne of product - crops

GHGs per tonne of product - livestock

Scaling up the impact of 100% organic

Greenhouse gas balance under 100% conversion to organic in England & Wales

Crops

Additional from overseas LUC & soil C sequestration

High, Med, Low = 100, 50, 25% from grassland COC = C opportunity cost

Food production implications Animal and crop production & imports

- Under 100% organic, less grain (wheat, barley etc.)
- Much less oil seed production
 - But "surplus grain" and oil seed meals fed to livestock
 - Consequences
- Restricts poultry and pig production
- Much less impact on ruminants (cattle & sheep)
- Under 100% organic, existing imports from the Mediterranean basin and tropics need more land

Imported hectares - conventional and 100% organic scenarios, crops plus livestock:

Summary

- We assess the consequences for net GHG emissions of a 100% shift to organic food production in England and Wales
- We predict major shortfalls in production of most agricultural products
- Direct emissions are reduced with organic farming
- But when increased overseas land use to compensate for shortfalls are factored in, net emissions are greater
- Enhanced soil carbon sequestration could offset only a small part of the overseas emissions

Food production implications Animal and crop production & imports

Feeding the nation with the current diet demands more land

with lower intensity production

• Is the current diet ideal?

Move to Eatwell Plate

- 14% reduction in GHG emissions
- Reduced land use

Impacts

Food production implications National and global

- Meeting increasing demand to feed the word and meeting GHG emission reduction targets is a challenge
- Extrapolating from the UK, 100% global organic without dietary change seems unlikely to work
- Meeting UK (or global) nutritional targets with 100% organic conversion is another worthy study, but not this one.

Implications for the organic sector

- Organic-specific crop breeding
- Protein sources and production for organic livestock (primarily plant based but alternative insect, algal approaches might also be appropriate)
- Food systems perspectives

Smith, Pete, et al. (2013) Global Change Biology 19.8: 2285-2302 Reganold and Wachter (2016)

Nature Plants 2, 15221

Acknowledgements

We gratefully acknowledge Cranfield University, the Organic Research Centre, The Ratcliff Foundation, Defra and the Engineering and Physical Sciences Research Council (EPSRC)

THE RATCLIFF FOUNDATION

Thank-you **Laurence Smith** Tel: 01285 652531 ext 4432 laurence.smith@rau.ac.uk

New Horizons for the UK Agri-food supply chain

